summaryrefslogtreecommitdiffstats
path: root/solutions/py/d15.py
blob: 59e5c3c94ec5f044c4b8879a2820f20f21b9369d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import intcode
import heapq as heap
import collections
import queue
import time

size = 2
def draw(board, droid=None, path=None, visited=None):
    min_x=max_x=min_y=max_y = 0
    for p in board:
        min_x = min(p[0], min_x)
        max_x = max(p[0], max_x)
        min_y = min(p[1], min_y)
        max_y = max(p[1], max_y)
    s = ""
    for y in range(min_y-1, max_y+2):
        s += "\n"
        for x in range(min_x-1, max_x+2):
            point = (x, y)
            if droid is not None and point == droid:
                s += "D"*size
            elif path is not None and point in path:
                s += "\u2591"*size
            elif visited is not None and point in visited:
                s += "."*size
            elif point in board:
                s += ("\u2588" if board[point] == "#" else " ")*size
            else:
                s += "."*size
    return s

def dist(a, b):
    return abs(a[0] - b[0]) + abs(a[1] -b[1])

def neighbours(p):
    ''' Return all neighbours to p in a tuple '''
    return [(p[0]+1, p[1]), (p[0]-1, p[1]), \
            (p[0], p[1]+1), (p[0], p[1]-1)]

def get_path(p_start, p_end, board):
    #print("get_path", p_start, p_end)
    '''
    Return a path as a deque between p_start and p_end given some board-state

    The path is guaranteed valid but not guaranteed the shortest
    '''
    if p_start == p_end:
        # already at destination, no path 
        return collections.deque()
    visited = set()
    h = []
    heap.heappush(h, (0, p_start, collections.deque()))
    while True:
        cur = heap.heappop(h)
        for n in neighbours(cur[1]):
            if n == p_end:
                # done
                cur[2].append(n)
                return cur[2]
            if n in visited:
                continue
            if n not in board:
                # unknown point
                continue
            if board[n] == "#":
                # wall
                continue
            new_path = collections.deque(cur[2])
            new_path.append(n)
            visited.add(n)
            heap.heappush(h, (dist(p_start, n), n, new_path))

def get_short_path(start, end, board):
    '''
    Return the shortest path between start and end given some board-state

    The path is guaranteed valid and the shortest available
    '''
    if start == end:
        return collections.deque()
    visited = set()
    h = []
    heap.heappush(h, (0, start, collections.deque()))
    while True:
        cur = heap.heappop(h)
        for n in neighbours(cur[1]):
            if n == end:
                cur[2].append(n)
                return cur[2]
            if n in visited:
                continue
            if n not in board:
                continue
            if board[n] == "#":
                continue
            new_path = collections.deque(cur[2])
            new_path.append(n)
            visited.add(n)
            #print(draw(board, path=new_path, visited=visited))
            #time.sleep(0.01)
            heap.heappush(h, (cur[0] + 1, n, new_path))

cur_x = cur_y = 0
stack = collections.deque()
stack.append((0,0))
path = collections.deque()
board = {}
oxygen = (0,0)

f = open("../input/15", "r").readlines()
c = intcode.Computer([int(x) for x in f[0].split(",")])

auto = True
steps = 0
while not c.SIG_HALT:
    if auto and len(stack) == 0:
        print("stack empty")
        break
    c.step()
    if c.SIG_INPUT:
        direction = 0
        prev_x, prev_y = cur_x, cur_y
        if auto:
            if len(path) == 0:
                # find new path
                for n in neighbours((cur_x, cur_y)):
                    if n not in stack and n not in board:
                        stack.append(n)
                next = stack.pop()
                path = get_path((cur_x, cur_y), next, board)
            next_step = path.popleft()
            if next_step[1] == cur_y-1:
                direction = 1
                cur_y -= 1
            elif next_step[1] == cur_y+1:
                direction = 2
                cur_y += 1
            elif next_step[0] == cur_x-1:
                direction = 3
                cur_x -= 1
            elif next_step[0] == cur_x+1:
                direction = 4
                cur_x += 1
            else:
                print("invalid path")
                break
        else:  # manual
            next_step = input()
            if next_step == "w":
                direction = 1
                cur_y -= 1
            elif next_step == "s":
                direction = 2
                cur_y += 1
            elif next_step == "a":
                direction = 3
                cur_x -= 1
            elif next_step == "d":
                direction = 4
                cur_x += 1
            else:
                continue
        c.input = direction
        steps += 1
        c.SIG_INPUT = False
    if c.SIG_OUTPUT:
        # time.sleep(0.075)
        # print(draw(board, droid=(cur_x, cur_y)))
        if c.output == 0:
            board[(cur_x, cur_y)] = "#"
            cur_x, cur_y = prev_x, prev_y
        elif c.output == 1:
            board[(cur_x, cur_y)] = "."
        elif c.output == 2:
            board[(cur_x, cur_y)] = "O"
            print("found oxygen at", (cur_x, cur_y))
            oxygen = (cur_x, cur_y)
        else:
            break
        c.output = None
        c.SIG_OUTPUT = False
        if not auto:
            print(draw(board, (cur_x, cur_y)))
print(draw(board))
print(draw(board, path=get_path((0,0), oxygen, board)))
print(draw(board, path=get_short_path((0,0), oxygen, board)))
print(len(get_short_path((0,0), oxygen, board)))
print(steps)