1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
import intcode
from collections import deque
import heapq as heap
import time
def draw(view, intersections={}, robot=None, direction=None):
min_x=max_x=min_y=max_y = 0
for p in view:
min_x = min(p[0], min_x)
max_x = max(p[0], max_x)
min_y = min(p[1], min_y)
max_y = max(p[1], max_y)
s = ""
for y in range(min_y, max_y+1):
s += "\n"
for x in range(min_x, max_x+1):
point = (x, y)
if robot is not None and point == robot:
if direction == 0:
s += ">"
elif direction == 1:
s += "v"
elif direction == 2:
s += "<"
elif direction == 3:
s += "^"
else:
s += "D"
elif point in intersections:
s += "O"
elif point in view:
s += view[point] * 1
else:
s += " " * 1
return s
def neighbours(p):
return [(p[0]+1, p[1]), (p[0]-1, p[1]), \
(p[0], p[1]+1), (p[0], p[1]-1)]
c = intcode.Computer([int(x) for x in open("../input/17", "r").readlines()[0].split(",")])
view = {}
scaffolds = []
buffer = ""
x=y = 0
while not c.SIG_HALT:
c.step()
if c.SIG_INPUT:
print("input??")
break
if c.SIG_OUTPUT:
if c.output == 10:
y += 1
x = 0
elif c.output == 35:
view[(x,y)] = "#"
scaffolds.append((x,y))
x += 1
elif c.output == 46:
view[(x,y)] = "."
x += 1
else:
view[(x,y)] = "#"
scaffolds.append((x,y))
robot = (x,y)
if c.output == 60: # <
direction = 2
elif c.output == 62: # >
direction = 0
elif c.output == 94: # ^
direction = 3
elif c.output == 86 or c.output == 118: # V or v
direction = 1
else:
print("????????????????")
break
x += 1
buffer = ""
c.output = None
c.SIG_OUTPUT = False
print(draw(view))
intersections = set()
al_sum = 0
for s in scaffolds:
ns = 0
for n in neighbours(s):
if n in scaffolds:
ns += 1
if ns == 4:
intersections.add(s)
al_sum += s[0] * s[1]
print(intersections)
print(draw(view, intersections=intersections, robot=robot, direction=direction))
print(al_sum)
x,y = robot
visited = set()
left = set()
for s in scaffolds:
left.add(s)
def get_infront(robot, direction):
dx=dy = 0
if direction == 0:
dx = 1
elif direction == 1:
dy = 1
elif direction == 2:
dx = -1
else:
dy = -1
return (robot[0]+dx, robot[1]+dy)
def get_behind(robot, direction):
dx=dy = 0
if direction == 0:
dx = -1
elif direction == 1:
dy = -1
elif direction == 2:
dx = 1
else:
dy = 1
return (robot[0]+dx, robot[1]+dy)
def get_turn(robot, direction, point):
dx = point[0] - robot[0]
dy = point[1] - robot[1]
if dx == 1:
turn_direction = 0
elif dy == 1:
turn_direction = 1
elif dx == -1:
turn_direction = 2
else:
turn_direction = 3
if direction == turn_direction:
return None
if (direction + 1) % 4 == turn_direction:
return "R"
elif (direction - 1) % 4 == turn_direction:
return "L"
else:
return False
def get_direction(direction, turn):
if turn == "L":
return (direction - 1) % 4
elif turn == "R":
return (direction + 1) % 4
else:
return False
def get_turnable_points(scaffolds, robot, direction):
valid = set()
for n in neighbours(robot):
if n in scaffolds and n != get_behind(robot, direction):
valid.add(n)
return list(valid)
'''
For each path, take steps until a wall is reached. For each intersection on the
way, queue new searches with turns (but don't start them, FIFO). When a wall is
reached, check if each point has been visited. If all points have been visited,
done. Else,
Structure of a deque-element:
Each search-element consists of a single tuple. The tuple contains
- The robot's position
- The robot's direction (after turning)
- The instruction-set up to that point
- The current WIP instruction
- All points that have been visited (as a set)
Structure of the instruction-set:
The instruction-set consists of a list of tuples. The tuples contain
- A turn-instruction
- The number of steps to take (after turning)
For example:
[(R,8), (R,8), (R,4), (R,4), (R,8)]
'''
current = None
direction = 2
paths = deque()
paths.append((robot, direction, [], ["L", 0], set()))
while True:
#print("considering", len(paths), "paths")
if current is None:
#print("popping")
current = paths.popleft()
#print("now", current)
robot = current[0]
direction = current[1]
instruction_set = current[2]
wip_instruction = current[3]
visited = current[4]
if len(visited) == len(scaffolds):
print("len(visited) == len(scaffolds)")
instruction_set.append(wip_instruction)
print(instruction_set)
break
if get_infront(robot, direction) not in scaffolds:
#print("wall")
# wall in front. save
instruction_set.append(wip_instruction)
avail_points = get_turnable_points(scaffolds, robot, direction)
if len(avail_points) != 1:
print("len(avail_direction != 2")
print(instruction_set)
break
wip_instruction = [get_turn(robot, direction, avail_points[0]), 0]
direction = get_direction(direction, get_turn(robot, direction, avail_points[0]))
paths.append((robot, direction, instruction_set, wip_instruction, visited))
#print("appended. now", paths)
current = None
else: # wall not in front
'''
if robot in intersections:
# queue intersections
new_instruction_set = instruction_set.copy()
new_instruction_set.append(wip_instruction)
paths.append((robot, get_direction(direction, "L"), \
new_instruction_set, ["L", 0], visited))
paths.append((robot, get_direction(direction, "R"), \
new_instruction_set, ["R", 0], visited))
'''
# take step
robot = get_infront(robot, direction)
#print("stepped", robot)
visited.add(robot)
wip_instruction[1] += 1
|