diff options
| author | Gustav Sörnäs <gustav@sornas.net> | 2022-01-21 13:28:45 +0100 |
|---|---|---|
| committer | Gustav Sörnäs <gustav@sornas.net> | 2022-01-21 13:28:45 +0100 |
| commit | c4950dfb23d1fe8cca7cb523d9ae4ea4b4dda2d5 (patch) | |
| tree | 991dd3862f8366a667de73aa03820f1701397e9a /sannolikhet/2D random variable.md | |
| parent | e5aa9d5a17d52eb61243a9c45dd2e65f27084c9c (diff) | |
| download | notes-c4950dfb23d1fe8cca7cb523d9ae4ea4b4dda2d5.tar.gz | |
move files
Diffstat (limited to 'sannolikhet/2D random variable.md')
| -rw-r--r-- | sannolikhet/2D random variable.md | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/sannolikhet/2D random variable.md b/sannolikhet/2D random variable.md new file mode 100644 index 0000000..10c2a39 --- /dev/null +++ b/sannolikhet/2D random variable.md @@ -0,0 +1,56 @@ +A [[Random variable]] with 2 "parts". + +Works the same for variables with even higher dimension. + +# [[Discrete]] 2D random variable + +## Joint probability mass function (pmf) + +$$p(x,y) = P(X=x \cap Y=y) \quad \left( = P(X=x, Y=y) \right)$$ + +## Joint table + +Much like the normal joint table but an actual table instead of a single line. + +We can get the respective 1D tables by adding rows or columns (depending on +which variable) together. + +$$p_X(x) \ \mathrm{of} \ X := p_X(x) = p(x,y_1) + ... + p(x, y_n)$$ + +## Marginal pdf + +# [[Continuous]] 2D random variable + +## Joint probability distribution function (pdf) + +1D is integrated over the number line, so 2D is integrated over $D$. + +$$? = \iint_D f(x,y) dxdy = P((X, Y) \in D)$$ + +where $D$ is any [[Borel set]] on $\mathbb{R}^2$. + +We don't usually draw this graph since it is in 3D (unpleasant). + +Instead, we draw the non-trivial domain (all non-zero values). + +$$p(x,y) \ge 0, \ \int_{-\infty}^\infty \left( \int_{-\infty}^\infty f(x,y) dx \right) dy = 1$$ + +## Marginal pdf + +$$f_X(x) \ \mathrm{of} \ X := \int_{-\infty}^\infty f(x,y)dy$$ + +Similar for $f_Y(y)$. + +Bounds might be weird. + +# Independance + +$X$ and $Y$ are independent if + +$$p(x,y) = p_X(x) \cdot p_Y(y) \qquad \mathrm{(discrete)}$$ +$$f(x,y) = f_X(x) \cdot f_Y(y) \qquad \mathrm{(continuous)}$$ + +Much the same as independence for [[Event]]s. + +Check by multiplying marginal pmf/pdf or if something "looks" dependant. Check +the intuition. |
