from osm_parser import get_default_parser from collections import defaultdict class Node: def __init__(self, id, lat, lng): self.id = id self.lat = float(lat) self.lng = float(lng) self.neighbours = [] def coord_tuple(self): return self.lat, self.lng parser = None # Have a global reusable parser object def add_neighbours(nodes): for way in parser.iter_ways(): if 'highway' not in way['tags']: continue road = way['road'] for i in range(len(road) - 1): node1 = road[i] node2 = road[i + 1] nodes[node1].neighbours.append(nodes[node2]) nodes[node2].neighbours.append(nodes[node1]) return nodes def extract_osm_nodes(f_name): global parser parser = get_default_parser(f_name) nodes = dict() grid = defaultdict() for node in parser.iter_nodes(): new_node = Node(node['id'], node['lat'], node['lon']) nodes[node['id']] = new_node add_neighbours(nodes) # remove nodes without neighbours. for node_id, node in nodes.copy().items(): if not node.neighbours: del nodes[node_id] # create a "grid" by grouping nearby nodes. for node in nodes.copy().values(): key = (int(round(node.lat, 3) * 1000), int(round(node.lng, 3) * 1000)) if key in grid.keys(): grid[key].append(node) else: grid[key] = [node] return nodes, grid def select_nodes_in_rectangle(nodes, min_lat, max_lat, min_long, max_long): return [node for node in nodes.values() if min_lat <= node.lat <= max_lat and min_long <= node.lng <= max_long]