1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
import heapq
import math
def length_haversine(p1, p2):
lat1 = p1.lat
lng1 = p1.lng
lat2 = p2.lat
lng2 = p2.lng
lat1, lng1, lat2, lng2 = map(math.radians, [lat1, lng1, lat2, lng2])
dlat = lat2 - lat1
dlng = lng2 - lng1
a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlng / 2) ** 2
c = 2 * math.asin(math.sqrt(a))
return 6372797.560856 * c # return the distance in meters
def neighbours_on_edge(p, steps=1):
candidates = set()
dy = dx = -steps
while dx < steps:
candidates.add((dx, dy))
dx += 1
dx = steps
while dy <= steps:
candidates.add((dx, dy))
dy += 1
dy = steps
while dx >= -steps:
candidates.add((dx, dy))
dx -= 1
dx = -steps
while dy >= -steps:
candidates.add((dx, dy))
dy -= 1
dy = -steps
candidates = [(p[0] + dx, p[1] + dy) for dx, dy in candidates]
candidates = sorted(list(candidates))
return candidates
def neighbours_containing_nodes(nodes, grid, p):
res = []
steps = 0
while not res:
res = [sq for sq in neighbours_on_edge(p, steps)
if sq in grid]
steps += 1
return res
def get_closest_in_square(nodes, node_ids, source_node):
min_node = None
min_value = None
for node_id in node_ids:
node = nodes[node_id]
length = length_haversine(source_node, node)
if min_node is None or length < min_value:
min_node = node_id
min_value = length
return min_node, min_value
def get_closest_node_id(nodes, grid, source_node):
""" Find the closest node using a grid search and return its id. """
first_squares = neighbours_containing_nodes(nodes, grid, source_node.grid_tuple())
min_node = None
min_value = None
for sq in first_squares:
for node_id in grid[sq]:
node = nodes[node_id]
length = length_haversine(source_node, node)
if min_node is None or length < min_value:
min_node = node_id
min_value = length
for sq in neighbours_on_edge(nodes[min_node].grid_tuple()):
for node_id in grid[sq]:
node = nodes[node_id]
length = length_haversine(source_node, node)
if length < min_value:
min_node = node_id
min_value = length
return min_node
def find_shortest_path(nodes, source_id, target_id):
""" Return the shortest path using Dijkstra's algortihm. """
# queue contains multiple (walk_dist, (node_0, node_1, ... node_n))-tuples
# where (node_0, node_1, ... node_n) is a walk to node_n
# and walk_dist is the total length of the walk in meters
queue = [(0, (source_id,))]
visited = set()
while queue:
# consider an unchecked walk
walk_dist, walk = heapq.heappop(queue)
walk_end = walk[-1]
if walk_end == target_id:
# you have reached your destination
return walk
if walk_end in visited:
# there exists a shorter walk to walk_end
continue
# otherwise this is the shortest walk to walk_end
visited.add(walk_end)
# consider all our neighbours
for neighbour in nodes[walk_end].neighbours:
if neighbour in visited:
# there exists a shorter walk to neighbour
continue
# otherwise this MIGHT be the shortest walk to neighbour
# so put it in the queue
new_dist = walk_dist + length_haversine(nodes[walk_end], neighbour)
new_walk = walk + (neighbour.id,)
heapq.heappush(queue, (new_dist, new_walk))
# no path found
return None
|