summaryrefslogtreecommitdiffstats
path: root/algorithms.py
blob: 1e70fa161b631b3d471bb8af16adb63a1c105605 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import colorsys
import heapq
import math


def length_haversine(p1, p2):
    lat1 = p1.lat
    lng1 = p1.lng
    lat2 = p2.lat
    lng2 = p2.lng
    lat1, lng1, lat2, lng2 = map(math.radians, [lat1, lng1, lat2, lng2])
    dlat = lat2 - lat1
    dlng = lng2 - lng1
    a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlng / 2) ** 2
    c = 2 * math.asin(math.sqrt(a))

    return 6372797.560856 * c  # return the distance in meters


def chunks(lst, n):
    """ Split lst into chunks of size n.

    The final chunk will have size equal to len(lst) % n
    """
    for i in range(0, len(lst), n):
        yield lst[i:min(i+n, len(lst))]


def lerp_color(start_color, end_color, t):
    """ Lerp between two colors by a factor t.

    Colors are assumed to be in the form "#RRGGBB"
    """
    def lerp(a, b, t):
        return a + (b - a) * t

    start = [int(c, 16)/255 for c in chunks(start_color[1:], 2)]
    end = [int(c, 16)/255 for c in chunks(end_color[1:], 2)]

    start = colorsys.rgb_to_hsv(*start)
    end = colorsys.rgb_to_hsv(*end)

    color = [lerp(c1, c2, t) for (c1, c2) in zip(start, end)]
    color = colorsys.hsv_to_rgb(*color)

    return "#{:02x}{:02x}{:02x}".format(
        int(color[0] * 255),
        int(color[1] * 255),
        int(color[2] * 255),
    )


def get_closest_node_id(nodes, source_node):
    """ Search through all nodes and return the id of the node
    that is closest to 'source_node'. """
    min_node = None
    min_value = None

    for node_id, node in nodes.items():
        length = length_haversine(source_node, node)
        if min_node is None or length < min_value:
            min_node = node_id
            min_value = length

    return min_node


def find_shortest_path(nodes, source_id, target_id):
    """ Return the shortest path using Dijkstra's algortihm. """
    # queue contains multiple (walk_dist, (node_0, node_1, ... node_n))-tuples
    # where (node_0, node_1, ... node_n) is a walk to node_n
    # and walk_dist is the total length of the walk in meters
    queue = [(0, (source_id,))]
    iterations = 0
    visited = set()

    while queue:
        # consider an unchecked walk
        walk_dist, walk = heapq.heappop(queue)
        walk_end = walk[-1]
        iterations += 1
        if walk_end == target_id:
            # you have reached your destination
            return walk, iterations
        if walk_end in visited:
            # there exists a shorter walk to walk_end
            continue
        # otherwise this is the shortest walk to walk_end
        visited.add(walk_end)
        # consider all our neighbours
        for neighbour in nodes[walk_end].neighbours:
            if neighbour in visited:
                # there exists a shorter walk to neighbour
                continue
            # otherwise this MIGHT be the shortest walk to neighbour
            # so put it in the queue
            new_dist = walk_dist + length_haversine(nodes[walk_end], neighbour)
            new_walk = walk + (neighbour.id,)
            heapq.heappush(queue, (new_dist, new_walk))
    # no path found
    return None