blob: 75cd3b7f8024b2b9b5c8ba2eab13ffa7e9e1e5f5 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
import math
from collections import defaultdict
def disjoint_forest(nodes, edges):
""" Algorithm to test how many components there are
in our graph. There should optimally be few components
and one with the bulk of all the nodes."""
ranks = defaultdict(int)
parents = {}
for node in nodes.keys():
parents[node] = node
def find_parent(node):
if node != parents[node]:
node = find_parent(parents[node])
return node
def union (node1, node2):
node1, node2 = find_parent(node1), find_parent(node2)
rank1, rank2 = ranks[node1], ranks[node2]
if rank1 < rank2:
parents[node1] = node2
else:
parents[node2] = node1
if rank1 == rank2:
ranks[node1] += 1
for node, node2 in edges:
union(node, node2)
sets = defaultdict(set)
for node, parent in parents.items():
parent = find_parent(parent)
sets[parent].add(node)
print("Total Nodes: ", len(nodes))
print("Disjoint components: ", len(sets.keys()))
max_size = 0
for set_nodes in sets.values(): # Find biggest component
if len(set_nodes) > max_size:
max_size = len(set_nodes)
print("Size of biggest component:", max_size)
return sets, find_parent
|