summaryrefslogtreecommitdiffstats
path: root/src/userprog/process.c
blob: fadd14d8b1575e0bc860b2d7741e1454d972e28d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
#include "userprog/process.h"
#include <debug.h>
#include <inttypes.h>
#include <round.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "userprog/gdt.h"
#include "userprog/pagedir.h"
#include "userprog/tss.h"
#include "filesys/directory.h"
#include "filesys/file.h"
#include "filesys/filesys.h"
#include "threads/flags.h"
#include "threads/init.h"
#include "threads/interrupt.h"
#include "threads/malloc.h"
#include "threads/palloc.h"
#include "threads/synch.h"
#include "threads/thread.h"
#include "threads/vaddr.h"

struct start_process_args
  {
    struct semaphore sema;

    // parent -> child
    char *file_name;

    // child -> parent
    bool success;
    struct parent_child *child;
  };

static thread_func start_process NO_RETURN;
static bool load (const char *cmdline, void (**eip) (void), void **esp);

/* Starts a new thread running a user program loaded from
   FILENAME.  The new thread may be scheduled (and may even exit)
   before process_execute() returns.  Returns the new process's
   thread id, or TID_ERROR if the thread cannot be created. */
tid_t
process_execute (const char *file_name) 
{
  struct start_process_args args;  // stack allocated since we know we wait for thread_create to finish reading
  tid_t tid;

  sema_init (&args.sema, 0);

  /* Make a copy of FILE_NAME.
     Otherwise there's a race between the caller and load(). */
  args.file_name = palloc_get_page (0);
  if (args.file_name == NULL)
    return TID_ERROR;
  strlcpy (args.file_name, file_name, PGSIZE);

  /* Create a new thread to execute FILE_NAME.
     If thread_create fails we free and return immediately since we know
     that the thread didn't start.
     Otherwise, the child thread can be scheduled freely so we explicitly
     wait for the child to signal that it has read from and written to
     the args. Only then can we free resources and return the tid. */
  tid = thread_create (file_name, PRI_DEFAULT, start_process, &args);
  if (tid != TID_ERROR) {
    sema_down (&args.sema);

    if (args.success) {
      list_push_back (&thread_current ()->children, &args.child->elem);
    } else {
      tid = -1;
    }
  }
  palloc_free_page (args.file_name);
  return tid;
}

/* A thread function that loads a user process and starts it
   running. */
static void
start_process (void *args_)
{
  struct start_process_args *args = args_;
  struct intr_frame if_;
  struct thread *t;
  bool success;

  t = thread_current ();

  /* Initialize interrupt frame and load executable. */
  memset (&if_, 0, sizeof if_);
  if_.gs = if_.fs = if_.es = if_.ds = if_.ss = SEL_UDSEG;
  if_.cs = SEL_UCSEG;
  if_.eflags = FLAG_IF | FLAG_MBS;
  success = load (args->file_name, &if_.eip, &if_.esp);
  args->success = success;
  t->load_success = success;

  if (success) {
    t->parent = malloc (sizeof (struct parent_child));

    sema_init (&t->parent->exit_sema, 0);
    lock_init (&t->parent->l);

    t->parent->child_tid = t->tid;
    t->parent->alive_count = 2;

    args->child = t->parent;
  }

  sema_up (&args->sema);

  /* If load failed, quit. */
  if (!success)
    thread_exit ();

  /* Start the user process by simulating a return from an
     interrupt, implemented by intr_exit (in
     threads/intr-stubs.S).  Because intr_exit takes all of its
     arguments on the stack in the form of a `struct intr_frame',
     we just point the stack pointer (%esp) to our stack frame
     and jump to it. */
  asm volatile ("movl %0, %%esp; jmp intr_exit" : : "g" (&if_) : "memory");
  NOT_REACHED ();
}

/* Waits for thread TID to die and returns its exit status.  If
   it was terminated by the kernel (i.e. killed due to an
   exception), returns -1.  If TID is invalid or if it was not a
   child of the calling process, or if process_wait() has already
   been successfully called for the given TID, returns -1
   immediately, without waiting.

   This function will be implemented in problem 2-2.  For now, it
   does nothing. */
int
process_wait (tid_t child_tid)
{
  struct thread *t = thread_current ();
  struct list_elem *e;
  for (e = list_begin (&t->children); e != list_end (&t->children);
       e = list_next (e))
  {
    struct parent_child *pc = list_entry (e, struct parent_child, elem);
    if (child_tid == pc->child_tid) {
      sema_down (&pc->exit_sema);
      int exit_status = pc->exit_status;
      pc->exit_status = -1;
      return exit_status;
    }
  }
  return -1;
}

static void
free_pc (struct parent_child *pc)
{
  lock_acquire (&pc->l);

  pc->alive_count--;
  if (pc->alive_count == 0) {
    free (pc);
  } else {
    lock_release (&pc->l);
  }
}

/* Free the current process's resources. */
void
process_exit (void)
{
  struct thread *cur = thread_current ();
  uint32_t *pd;

  if (cur->load_success) {
    sema_up (&cur->parent->exit_sema);
    free_pc (cur->parent);
    printf("%s: exit(%d)\n", cur->name, cur->parent->exit_status);

    struct list_elem *e;
    struct parent_child *child;
    while (!list_empty (&cur->children)) {
      e = list_pop_front (&cur->children);
      child = list_entry (e, struct parent_child, elem);
      free_pc (child);
    }
  }

  /* Destroy the current process's page directory and switch back
     to the kernel-only page directory. */
  pd = cur->pagedir;
  if (pd != NULL) 
    {
      /* Correct ordering here is crucial.  We must set
         cur->pagedir to NULL before switching page directories,
         so that a timer interrupt can't switch back to the
         process page directory.  We must activate the base page
         directory before destroying the process's page
         directory, or our active page directory will be one
         that's been freed (and cleared). */
      cur->pagedir = NULL;
      pagedir_activate (NULL);
      pagedir_destroy (pd);
    }
}

/* Sets up the CPU for running user code in the current
   thread.
   This function is called on every context switch. */
void
process_activate (void)
{
  struct thread *t = thread_current ();

  /* Activate thread's page tables. */
  pagedir_activate (t->pagedir);

  /* Set thread's kernel stack for use in processing
     interrupts. */
  tss_update ();
}

/* We load ELF binaries.  The following definitions are taken
   from the ELF specification, [ELF1], more-or-less verbatim.  */

/* ELF types.  See [ELF1] 1-2. */
typedef uint32_t Elf32_Word, Elf32_Addr, Elf32_Off;
typedef uint16_t Elf32_Half;

/* For use with ELF types in printf(). */
#define PE32Wx PRIx32   /* Print Elf32_Word in hexadecimal. */
#define PE32Ax PRIx32   /* Print Elf32_Addr in hexadecimal. */
#define PE32Ox PRIx32   /* Print Elf32_Off in hexadecimal. */
#define PE32Hx PRIx16   /* Print Elf32_Half in hexadecimal. */

/* Executable header.  See [ELF1] 1-4 to 1-8.
   This appears at the very beginning of an ELF binary. */
struct Elf32_Ehdr
  {
    unsigned char e_ident[16];
    Elf32_Half    e_type;
    Elf32_Half    e_machine;
    Elf32_Word    e_version;
    Elf32_Addr    e_entry;
    Elf32_Off     e_phoff;
    Elf32_Off     e_shoff;
    Elf32_Word    e_flags;
    Elf32_Half    e_ehsize;
    Elf32_Half    e_phentsize;
    Elf32_Half    e_phnum;
    Elf32_Half    e_shentsize;
    Elf32_Half    e_shnum;
    Elf32_Half    e_shstrndx;
  };

/* Program header.  See [ELF1] 2-2 to 2-4.
   There are e_phnum of these, starting at file offset e_phoff
   (see [ELF1] 1-6). */
struct Elf32_Phdr
  {
    Elf32_Word p_type;
    Elf32_Off  p_offset;
    Elf32_Addr p_vaddr;
    Elf32_Addr p_paddr;
    Elf32_Word p_filesz;
    Elf32_Word p_memsz;
    Elf32_Word p_flags;
    Elf32_Word p_align;
  };

/* Values for p_type.  See [ELF1] 2-3. */
#define PT_NULL    0            /* Ignore. */
#define PT_LOAD    1            /* Loadable segment. */
#define PT_DYNAMIC 2            /* Dynamic linking info. */
#define PT_INTERP  3            /* Name of dynamic loader. */
#define PT_NOTE    4            /* Auxiliary info. */
#define PT_SHLIB   5            /* Reserved. */
#define PT_PHDR    6            /* Program header table. */
#define PT_STACK   0x6474e551   /* Stack segment. */

/* Flags for p_flags.  See [ELF3] 2-3 and 2-4. */
#define PF_X 1          /* Executable. */
#define PF_W 2          /* Writable. */
#define PF_R 4          /* Readable. */

static bool setup_stack (void **esp);
static bool validate_segment (const struct Elf32_Phdr *, struct file *);
static bool load_segment (struct file *file, off_t ofs, uint8_t *upage,
                          uint32_t read_bytes, uint32_t zero_bytes,
                          bool writable);

/* Loads an ELF executable from FILE_NAME into the current thread.
   Stores the executable's entry point into *EIP
   and its initial stack pointer into *ESP.
   Returns true if successful, false otherwise. */
bool
load (const char *file_name, void (**eip) (void), void **esp) 
{
  struct thread *t = thread_current ();
  struct Elf32_Ehdr ehdr;
  struct file *file = NULL;
  off_t file_ofs;
  bool success = false;
  int i;

  /* Allocate and activate page directory. */
  t->pagedir = pagedir_create ();
  if (t->pagedir == NULL) 
    goto done;
  process_activate ();

  /* Set up stack. */
  if (!setup_stack (esp)){
    goto done;
  }

  size_t cmd_len, word_alignment;
  char *esp_cmd, **esp_argv_first, **esp_argv_entry, ***esp_argv;
  int *esp_argc, argc = 0;

  /* Copy passed command to start of user stack. */
  cmd_len = strlen (file_name);
  esp_cmd = *esp;
  esp_cmd -= cmd_len + 1;  // +1 makes room for '\0'
  for (i = 0; i < cmd_len; i++) {
    esp_cmd[i] = file_name[i];
  }
  esp_cmd[cmd_len] = '\0';

  /* Tokenize passed command in-place. */
  // esp_cmd still points to first character of passed command
  char *token, *save_ptr;
  for (token = strtok_r (esp_cmd, " ", &save_ptr); token != NULL;
       token = strtok_r (NULL, " ", &save_ptr))
  {
    argc++;
  }

  file_name = esp_cmd;
  strlcpy (thread_current ()->name, file_name, 16);

  /* argv entries are pointers so they need to be aligned to the pointer size. */
  size_t psize = sizeof (char *);
  word_alignment = (cmd_len + psize) / psize;

  /* Write argv entries. */
  esp_argv_entry = *esp;
  esp_argv_entry -= word_alignment + argc + 1;  // +1 makes room for argv[argc] = NULL
  esp_argv_first = esp_argv_entry;  // save for later

  // esp_cmd points to first entry so write directly
  *esp_argv_entry = esp_cmd;
  esp_argv_entry++;

  for (i = 0; i < argc - 1; i++) {
    // find next \0 in cmd
    while (*(++esp_cmd) != '\0') {}
    *esp_argv_entry = esp_cmd + 1;  // point to next character
    esp_argv_entry++;
  }

  esp_argv = esp_argv_first - 1;

  *esp_argv = esp_argv_first;

  esp_argc = esp_argv - 1;
  *esp_argc = argc;

  *esp = esp_argc - 1; // return address

   /* Uncomment the following line to print some debug
     information. This will be useful when you debug the program
     stack.*/
// #define STACK_DEBUG

#ifdef STACK_DEBUG
  printf("*esp is %p\nstack contents:\n", *esp);
  hex_dump((int)*esp , *esp, PHYS_BASE-*esp+16, true);
  /* The same information, only more verbose: */
  /* It prints every byte as if it was a char and every 32-bit aligned
     data as if it was a pointer. */
  void * ptr_save = PHYS_BASE;
  i=-15;
  while(ptr_save - i >= *esp) {
    char *whats_there = (char *)(ptr_save - i);
    // show the address ...
    printf("%x\t", (uint32_t)whats_there);
    // ... printable byte content ...
    if(*whats_there >= 32 && *whats_there < 127)
      printf("%c\t", *whats_there);
    else
      printf(" \t");
    // ... and 32-bit aligned content 
    if(i % 4 == 0) {
      uint32_t *wt_uint32 = (uint32_t *)(ptr_save - i);
      printf("%x\t", *wt_uint32);
      printf("\n-------");
      if(i != 0)
        printf("------------------------------------------------");
      else
        printf(" the border between KERNEL SPACE and USER SPACE ");
      printf("-------");
    }
    printf("\n");
    i++;
  }
#endif

  /* Open executable file. */
  file = filesys_open (file_name);
  if (file == NULL) 
    {
      printf ("load: %s: open failed\n", file_name);
      goto done; 
    }

  /* Read and verify executable header. */
  if (file_read (file, &ehdr, sizeof ehdr) != sizeof ehdr
      || memcmp (ehdr.e_ident, "\177ELF\1\1\1", 7)
      || ehdr.e_type != 2
      || ehdr.e_machine != 3
      || ehdr.e_version != 1
      || ehdr.e_phentsize != sizeof (struct Elf32_Phdr)
      || ehdr.e_phnum > 1024) 
    {
      printf ("load: %s: error loading executable\n", file_name);
      goto done; 
    }

  /* Read program headers. */
  file_ofs = ehdr.e_phoff;
  for (i = 0; i < ehdr.e_phnum; i++) 
    {
      struct Elf32_Phdr phdr;

      if (file_ofs < 0 || file_ofs > file_length (file))
        goto done;
      file_seek (file, file_ofs);

      if (file_read (file, &phdr, sizeof phdr) != sizeof phdr)
        goto done;
      file_ofs += sizeof phdr;
      switch (phdr.p_type) 
        {
        case PT_NULL:
        case PT_NOTE:
        case PT_PHDR:
        case PT_STACK:
        default:
          /* Ignore this segment. */
          break;
        case PT_DYNAMIC:
        case PT_INTERP:
        case PT_SHLIB:
          goto done;
        case PT_LOAD:
          if (validate_segment (&phdr, file)) 
            {
              bool writable = (phdr.p_flags & PF_W) != 0;
              uint32_t file_page = phdr.p_offset & ~PGMASK;
              uint32_t mem_page = phdr.p_vaddr & ~PGMASK;
              uint32_t page_offset = phdr.p_vaddr & PGMASK;
              uint32_t read_bytes, zero_bytes;
              if (phdr.p_filesz > 0)
                {
                  /* Normal segment.
                     Read initial part from disk and zero the rest. */
                  read_bytes = page_offset + phdr.p_filesz;
                  zero_bytes = (ROUND_UP (page_offset + phdr.p_memsz, PGSIZE)
                                - read_bytes);
                }
              else 
                {
                  /* Entirely zero.
                     Don't read anything from disk. */
                  read_bytes = 0;
                  zero_bytes = ROUND_UP (page_offset + phdr.p_memsz, PGSIZE);
                }
              if (!load_segment (file, file_page, (void *) mem_page,
                                 read_bytes, zero_bytes, writable))
                goto done;
            }
          else
            goto done;
          break;
        }
    }

  /* Start address. */
  *eip = (void (*) (void)) ehdr.e_entry;

  success = true;

 done:
  /* We arrive here whether the load is successful or not. */
  file_close (file);
  return success;
}

/* load() helpers. */

static bool install_page (void *upage, void *kpage, bool writable);

/* Checks whether PHDR describes a valid, loadable segment in
   FILE and returns true if so, false otherwise. */
static bool
validate_segment (const struct Elf32_Phdr *phdr, struct file *file) 
{
  /* p_offset and p_vaddr must have the same page offset. */
  if ((phdr->p_offset & PGMASK) != (phdr->p_vaddr & PGMASK)) 
    return false; 

  /* p_offset must point within FILE. */
  if (phdr->p_offset > (Elf32_Off) file_length (file)) 
    return false;

  /* p_memsz must be at least as big as p_filesz. */
  if (phdr->p_memsz < phdr->p_filesz) 
    return false; 

  /* The segment must not be empty. */
  if (phdr->p_memsz == 0)
    return false;
  
  /* The virtual memory region must both start and end within the
     user address space range. */
  if (!is_user_vaddr ((void *) phdr->p_vaddr))
    return false;
  if (!is_user_vaddr ((void *) (phdr->p_vaddr + phdr->p_memsz)))
    return false;

  /* The region cannot "wrap around" across the kernel virtual
     address space. */
  if (phdr->p_vaddr + phdr->p_memsz < phdr->p_vaddr)
    return false;

  /* Disallow mapping page 0.
     Not only is it a bad idea to map page 0, but if we allowed
     it then user code that passed a null pointer to system calls
     could quite likely panic the kernel by way of null pointer
     assertions in memcpy(), etc. */
  if (phdr->p_vaddr < PGSIZE)
    return false;

  /* It's okay. */
  return true;
}

/* Loads a segment starting at offset OFS in FILE at address
   UPAGE.  In total, READ_BYTES + ZERO_BYTES bytes of virtual
   memory are initialized, as follows:

        - READ_BYTES bytes at UPAGE must be read from FILE
          starting at offset OFS.

        - ZERO_BYTES bytes at UPAGE + READ_BYTES must be zeroed.

   The pages initialized by this function must be writable by the
   user process if WRITABLE is true, read-only otherwise.

   Return true if successful, false if a memory allocation error
   or disk read error occurs. */
static bool
load_segment (struct file *file, off_t ofs, uint8_t *upage,
              uint32_t read_bytes, uint32_t zero_bytes, bool writable) 
{
  ASSERT ((read_bytes + zero_bytes) % PGSIZE == 0);
  ASSERT (pg_ofs (upage) == 0);
  ASSERT (ofs % PGSIZE == 0);

  file_seek (file, ofs);
  while (read_bytes > 0 || zero_bytes > 0) 
    {
      /* Calculate how to fill this page.
         We will read PAGE_READ_BYTES bytes from FILE
         and zero the final PAGE_ZERO_BYTES bytes. */
      size_t page_read_bytes = read_bytes < PGSIZE ? read_bytes : PGSIZE;
      size_t page_zero_bytes = PGSIZE - page_read_bytes;

      /* Get a page of memory. */
      uint8_t *kpage = palloc_get_page (PAL_USER);
      if (kpage == NULL)
        return false;

      /* Load this page. */
      if (file_read (file, kpage, page_read_bytes) != (int) page_read_bytes)
        {
          palloc_free_page (kpage);
          return false; 
        }
      memset (kpage + page_read_bytes, 0, page_zero_bytes);

      /* Add the page to the process's address space. */
      if (!install_page (upage, kpage, writable)) 
        {
          palloc_free_page (kpage);
          return false; 
        }

      /* Advance. */
      read_bytes -= page_read_bytes;
      zero_bytes -= page_zero_bytes;
      upage += PGSIZE;
    }
  return true;
}

/* Create a minimal stack by mapping a zeroed page at the top of
   user virtual memory. */
static bool
setup_stack (void **esp) 
{
  uint8_t *kpage;
  bool success = false;

  kpage = palloc_get_page (PAL_USER | PAL_ZERO);
  if (kpage != NULL) 
    {
      success = install_page (((uint8_t *) PHYS_BASE) - PGSIZE, kpage, true);
      if (success)
        *esp = PHYS_BASE;
      else
        palloc_free_page (kpage);
    }
  return success;
}

/* Adds a mapping from user virtual address UPAGE to kernel
   virtual address KPAGE to the page table.
   If WRITABLE is true, the user process may modify the page;
   otherwise, it is read-only.
   UPAGE must not already be mapped.
   KPAGE should probably be a page obtained from the user pool
   with palloc_get_page().
   Returns true on success, false if UPAGE is already mapped or
   if memory allocation fails. */
static bool
install_page (void *upage, void *kpage, bool writable)
{
  struct thread *t = thread_current ();

  /* Verify that there's not already a page at that virtual
     address, then map our page there. */
  return (pagedir_get_page (t->pagedir, upage) == NULL
          && pagedir_set_page (t->pagedir, upage, kpage, writable));
}