1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
import heapq
import math
from store import get_relevant_neighbours
def length_haversine(p1, p2):
lat1 = p1.lat
lng1 = p1.lng
lat2 = p2.lat
lng2 = p2.lng
lat1, lng1, lat2, lng2 = map(math.radians, [lat1, lng1, lat2, lng2])
dlat = lat2 - lat1
dlng = lng2 - lng1
a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(
dlng / 2) ** 2
c = 2 * math.asin(math.sqrt(a))
return 6372797.560856 * c # return the distance in meters
<<<<<<< HEAD
def grid_search(grid, source_node):
"""
Finds closest node to source node by comparing distance to nodes within
nearest tiles in the grid.
"""
closest_nodes = []
source_key = (int(round(source_node.lat, 3) * 1000), int(round(
source_node.lng, 3) * 1000))
closest_tiles = find_nodes(0, grid, source_key)
for tile_nodes in closest_tiles:
closest_nodes.append(get_closest_node(tile_nodes, source_node))
closest_node_id = get_closest_node(closest_nodes, source_node).id
return closest_node_id
def find_nodes(offset, grid, source_key):
"""
Searches a grid in an outward "spiral" from source node fetching all tiles
which contain nodes.
"""
tiles = None
while not tiles:
tiles = look_for_nodes(offset, grid, source_key)
offset += 1
return tiles + look_for_nodes(offset + 1, grid, source_key)
def look_for_nodes(offset, grid, source_key):
"""Search for nearest tile containing nodes in an outward spiral."""
tiles = []
for i in range(-offset, offset + 1):
for j in range(-offset, offset + 1):
if i in (-offset, offset) or j in (-offset, offset):
key = (source_key[0] + j, source_key[1] + i)
if key in grid.keys():
tiles.append(grid[key])
return tiles
def get_closest_node(nodes, source_node):
"""
Searches through all nodes in a specified grid and return node
closes to source node.
"""
def get_closest_node_id(nodes, source_node, transport_mode):
""" Search through all nodes and return the id of the node
that is closest to 'source_node'. """
min_node = None
min_value = None
for node in nodes:
length = length_haversine(source_node, node)
relevant_neighbours = get_relevant_neighbours(node, transport_mode)
if (min_node is None or length < min_value) and relevant_neighbours:
min_node = node
min_value = length
return min_node
def find_shortest_path(nodes, source_id, target_id, transport_mode: str):
""" Return the shortest path using Dijkstra's algortihm. """
# queue contains multiple (walk_dist, (node_0, node_1, ... node_n))-tuples
# where (node_0, node_1, ... node_n) is a walk to node_n
# and walk_dist is the total length of the walk in meters
queue = [(0, (source_id,))]
visited = set()
while queue:
# consider an unchecked walk
walk_dist, walk = heapq.heappop(queue)
walk_end = walk[-1]
if walk_end == target_id:
# you have reached your destination
return walk
if walk_end in visited:
# there exists a shorter walk to walk_end
continue
# otherwise this is the shortest walk to walk_end
visited.add(walk_end)
# consider all our neighbours
end_node = nodes[walk_end]
relevant_neighbours = get_relevant_neighbours(end_node, transport_mode)
for neighbour in relevant_neighbours:
if neighbour in visited:
# there exists a shorter walk to neighbour
continue
# otherwise this MIGHT be the shortest walk to neighbour
# so put it in the queue
new_dist = walk_dist + length_haversine(nodes[walk_end], neighbour)
new_walk = walk + (neighbour.id,)
heapq.heappush(queue, (new_dist, new_walk))
# no path found
return None
|