summaryrefslogtreecommitdiffstats
path: root/algorithms.py
blob: 9d4f538c27be2e3b0ace2380320003bfc43c0a6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import heapq
import math
from store import get_relevant_neighbours


def length_haversine(p1, p2):
    lat1 = p1.lat
    lng1 = p1.lng
    lat2 = p2.lat
    lng2 = p2.lng
    lat1, lng1, lat2, lng2 = map(math.radians, [lat1, lng1, lat2, lng2])
    dlat = lat2 - lat1
    dlng = lng2 - lng1
    a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(
        dlng / 2) ** 2
    c = 2 * math.asin(math.sqrt(a))

    return 6372797.560856 * c  # return the distance in meters


<<<<<<< HEAD
def grid_search(grid, source_node):
    """
    Finds closest node to source node by comparing distance to nodes within
    nearest tiles in the grid.
    """
    closest_nodes = []

    source_key = (int(round(source_node.lat, 3) * 1000), int(round(
        source_node.lng, 3) * 1000))

    closest_tiles = find_nodes(0, grid, source_key)

    for tile_nodes in closest_tiles:
        closest_nodes.append(get_closest_node(tile_nodes, source_node))

    closest_node_id = get_closest_node(closest_nodes, source_node).id

    return closest_node_id


def find_nodes(offset, grid, source_key):
    """
    Searches a grid in an outward "spiral" from source node fetching all tiles
    which contain nodes.
    """
    tiles = None

    while not tiles:
        tiles = look_for_nodes(offset, grid, source_key)
        offset += 1

    return tiles + look_for_nodes(offset + 1, grid, source_key)


def look_for_nodes(offset, grid, source_key):
    """Search for nearest tile containing nodes in an outward spiral."""
    tiles = []
    for i in range(-offset, offset + 1):
        for j in range(-offset, offset + 1):

            if i in (-offset, offset) or j in (-offset, offset):

                key = (source_key[0] + j, source_key[1] + i)

                if key in grid.keys():
                    tiles.append(grid[key])

    return tiles


def get_closest_node(nodes, source_node):
    """
    Searches through all nodes in a specified grid and return node
    closes to source node.
    """
def get_closest_node_id(nodes, source_node, transport_mode):
    """ Search through all nodes and return the id of the node
    that is closest to 'source_node'. """
    min_node = None
    min_value = None

    for node in nodes:
        length = length_haversine(source_node, node)

        relevant_neighbours = get_relevant_neighbours(node, transport_mode)

        if (min_node is None or length < min_value) and relevant_neighbours:
            min_node = node
            min_value = length

    return min_node


def find_shortest_path(nodes, source_id, target_id, transport_mode: str):
    """ Return the shortest path using Dijkstra's algortihm. """
    # queue contains multiple (walk_dist, (node_0, node_1, ... node_n))-tuples
    # where (node_0, node_1, ... node_n) is a walk to node_n
    # and walk_dist is the total length of the walk in meters
    queue = [(0, (source_id,))]
    visited = set()

    while queue:
        # consider an unchecked walk
        walk_dist, walk = heapq.heappop(queue)
        walk_end = walk[-1]
        if walk_end == target_id:
            # you have reached your destination
            return walk
        if walk_end in visited:
            # there exists a shorter walk to walk_end
            continue

        # otherwise this is the shortest walk to walk_end
        visited.add(walk_end)
        # consider all our neighbours
        end_node = nodes[walk_end]

        relevant_neighbours = get_relevant_neighbours(end_node, transport_mode)

        for neighbour in relevant_neighbours:
            if neighbour in visited:
                # there exists a shorter walk to neighbour
                continue
            # otherwise this MIGHT be the shortest walk to neighbour
            # so put it in the queue
            new_dist = walk_dist + length_haversine(nodes[walk_end], neighbour)
            new_walk = walk + (neighbour.id,)
            heapq.heappush(queue, (new_dist, new_walk))

    # no path found
    return None