summaryrefslogtreecommitdiffstats
path: root/store.py
blob: 87cd9401c28f32a187baa054be24cfb83329f0f3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from osm_parser import get_default_parser
from collections import defaultdict


class Node:
    def __init__(self, id, lat, lng):
        self.id = id
        self.lat = float(lat)
        self.lng = float(lng)
        self.neighbours = []

        self.parent = None
        self.size = 1

    def find_root(self):
        """ Recursively find the root of this node. """
        if not self.parent:
            return self
        else:
            return self.parent.find_root()

    def union(self, other):
        """ Mark this node and some other node as part of the same tree. """
        this = self.find_root()
        other = other.find_root()

        # If we share the same root we are already part of the same tree
        if this == other:
            return

        # Minimize tree size. This ensures optimal complexity.
        # We could also store the rank instead.
        if this.size < other.size:
            this, other = other, this

        # This is safe since other is a root node and currently doesn't have a
        # parent.
        other.parent = this
        this.size += other.size

    def coord_tuple(self):
        return self.lat, self.lng


def add_neighbours(nodes, parser):
    for way in parser.iter_ways():
        if 'highway' not in way['tags']:
            continue

        road = way['road']

        for i in range(len(road) - 1):
            node1 = road[i]
            node2 = road[i + 1]

            nodes[node1].neighbours.append(nodes[node2])
            nodes[node2].neighbours.append(nodes[node1])
            # These two are neighbours and should be part of the same tree.
            nodes[node1].union(nodes[node2])

    return nodes


def extract_osm_nodes(f_name):
    parser = get_default_parser(f_name)
    nodes = dict()
    grid = defaultdict()

    for node in parser.iter_nodes():
        new_node = Node(node['id'], node['lat'], node['lon'])
        nodes[node['id']] = new_node

    add_neighbours(nodes, parser)

    # Remove nodes without neighbours
    for node_id, node in nodes.copy().items():
        if not node.neighbours:
            del nodes[node_id]

    # Construct a forest of disjoint trees.
    # The forest is a { root: tree }-dict. If we construct a relation where
    # two nodes relate to each other if they are a part of the same tree,
    # this can be shown to be an equivalence relation where the equivalence
    # class is some node in the tree. In our case, the equivalence class
    # becomes the root of each node since it will be the same for all nodes
    # in the same tree due our use of union-find.
    forest = defaultdict(dict)
    for node_id, node in nodes.items():
        forest[node.find_root().id][node_id] = node

    # Find the largest disjoint tree.
    # We store the root so we can easily test if a node is part of this
    # tree or not.
    best_size = 0
    best_tree = None
    best_root = None
    for root in forest:
        tree = forest[root]
        size = len(tree)
        if size > best_size:
            best_size = size
            best_tree = tree
            best_root = root

    unconnected_nodes = []
    for _, node in nodes.items():
        if node.find_root().id != best_root:
            unconnected_nodes.append(node)

    nodes = best_tree
    # create a "grid" by grouping nearby nodes.
    for node in nodes.copy().values():

        key = (int(round(node.lat, 3) * 1000), int(round(node.lng, 3)
                                                   * 1000))

        if key in grid.keys():
            grid[key].append(node)

        else:
            grid[key] = [node]

    return nodes, grid, unconnected_nodes


def select_nodes_in_rectangle(nodes, min_lat, max_lat, min_long, max_long):
    return [node for node in nodes.values()
            if min_lat <= node.lat <= max_lat
            and min_long <= node.lng <= max_long]